处理中...

首页 > 资料大全 > 解决方案 >

适用于大功率电池组的电池管理架构

适用于大功率电池组的电池管理架构
来源:凌力尔特公司 时间:2011-07-14

汽车和工业设备制造商一般要求电池寿命超过 10 年,这些制造商还会规定所需的可用电池容量。对电池系统设计师的挑战是如何用小的电池组实现的容量。为了实现这个目标,电池系统必须用精准的电子组件仔细控制和监视电池。

大功率电池组系统

  用于电动汽车或工业设备的大功率电池组系统由很多串联叠置的电池组成。一个典型的电池组含有的电池可能有 96 个之多,就充电至 4.2V 的锂离子电池而言,总共能产生超过 400V 的电压。

  尽管系统将电池组看作单个高压电池,对电池组中的电池同时充电或放电,但是电池控制系统必须独立考虑每一个电池的状态。如果电池组中一个电池的 容量比其他电池略低,那么经过多个充电/放电周期之后,其充电状态 (SOC) 将逐渐偏离其余的电池。如果这节电池与其余电池的充电状态没有周期性地进行均衡,那么该电池终将进入深度放电状态,从而损坏,并终导致电池组故障。因 此,必须监视每节电池的电压,以确定充电状态。此外,还必须预先采取措施,使电池能单独充电或放电,以均衡电池之间的充电状态。

与监视系统通信

  电池组监视系统需要考虑的一个重要因素是通信接口。就印刷电路板 (PCB) 内部的通信而言,常见的选择包括:串行外围接口 (SPI) 总线;内置集成电路 (I2C) 总线。这两种接口的通信开销都很低,适合于低干扰环境。

  另一种选择是 CAN 总线,该接口在汽车应用中得到了广泛采用。CAN 总线非常可靠,具有差错检测和容错能力,但是通信开销很大,材料成本很高。尽管从电池系统到主 CAN 总线有一个接口也许是可取的,但在电池组内部,SPI 或 I2C 通信是有利的。

  诸如凌力尔特的 LTC6802 电池组监视器 IC 等器件测量由多达 12 节电池组成的电池组的电压,多个 LTC6802可以从电池组的低端到顶端串联叠置,该器件还有内部开关,允许单节电池放电,以使该电池与电池组中其余电池的容量达到均衡状态。

  为了说明这种电池组架构,我们考虑一个有 96 节锂离子电池的系统。监视整个电池组需要 8 个电池组 IC,每个器件都以不同的电压工作。

  采用 4.2V 锂离子电池,底端监视器件监视 12 个电池,电压从 0V 至 50.4V。下一组电池的电压范围为 50.4V 至 100.8V,沿着电池组向上依此类推。

  这些器件以不同电压工作,它们之间的通信带来了巨大挑战。人们已经考虑了各种方法,考虑到系统设计师的侧重点不同,每种方法都有各自的优点和缺点。

电池监视的要求

  在确定电池监视系统的架构时,至少需要均衡 5 个主要的要求。这些要求的相对重要性视终客户的需求和期望的不同而不同。

  1. 准确度:为了充分利用的电池容量,电池监视器必须是准确的。不过,汽车和工业系统充满噪声,电磁干扰存在于很宽的频率范围内。准确度有任何损失都将给电池组的寿命和性能带来负面影响。

  2. 可靠性:无论使用什么样的电源,汽车和工业制造商都必须满足极高的可靠性标准。此外,某些电池的高能量容量和潜在的易变性也是主要的安全隐忧。在保守条件 下停机的故障保险系统比较适合灾难性电池故障,尽管这种系统有可能不幸使乘客滞留或使生产线暂停。因此,电池系统必须仔细监视和控制,以确保在系统的整个 寿命期内实现全面控制。为了限度地减少虚假和真实故障,一个良好设计的电池组系统必须保证可靠的通信、采用可限度地减少故障的模式、和具备故障检 测。

  3. 可制造性:新式汽车中含有种类繁多的电子组件和复杂的布线线束。增加复杂的电子组件和配线以支持电动汽车 / 混合电动汽车 (EV/HEV) 电池系统会给汽车制造带来更多挑战。必须限度地减少组件和连线,以满足严格的尺寸和重量限制,并确保大批量生产是实际可行的。

  4. 成本:复杂的电子控制系统可能很昂贵。限度地减少相对昂贵的组件 (如微控制器、接口控制器、电流隔离器和晶体) 可以显著降低系统的总体成本。

  5. 功率:电池监视器本身也是电池的负载。较低的工作电流可提高系统效率,而当汽车或设备关闭时,较低的备用电流可防止电池过度放电。

电池监视

  下面介绍了电池监视系统的 4 种架构。每种架构都设计为自主电池监视系统,并假定系统由 96 个电池组成,12 个电池为一组,分成 8 组 (参见表 1)。每组都有一个至主 CAN 总线的 CAN 接口,而且与系统其余部分是电流隔离的。

表 1:电池监视架构比较

并联独立 CAN 模块 (图 1)

  每个由 12 个电池组成的模块都含有一个 PC 板,板上有一个 LTC6802、一个微控制器、一个 CAN 接口和一个电流隔离变压器。系统所需的大量电池监视数据使主 CAN 总线难以应付,因此 CAN 模块必须在 CAN 子网上。CAN 子网由一个主控制器协调,该主控制器也为主 CAN 总线提供网关。

图 1:并联独立 CAN 模块

具 CAN 网关的并联模块 (图 2)

  每个由 12 节电池组成的模块都含有一个 PC 板,板上有一个 LTC6802 和一个数字隔离器。这些模块具有至控制器电路板的独立接口连接,该控制器电路板上含有一个微控制器、一个 CAN 接口和一个电流隔离变压器。微控制器协调这些模块,并为主 CAN 总线提供网关。

图 2:具 CAN 网关的并联模块的方框图

具 CAN 网关的单个监视模块 (图 3)

  在这种配置中,由 12 节电池组成的模块中没有监视和控制电路。取而代之的是,单个 PC 板含有 8 个 LTC6802 监视器 IC,每个监视器 IC 都连接至其电池模块。LTC6802 器件通过非隔离式 SPI 兼容的串行接口通信。单个微控制器通过 SPI 兼容的串行接口控制整组电池监视器,该微控制器也是至主 CAN 总线的网关。CAN 收发器和电流隔离变压器是该电池监视系统的后两个组件。

图 3:具 CAN 网关的单个监视模块的方框图

具 CAN 网关的串联模块 (图 4)

  这种架构类似于单个监视模块,除了每个 LTC6802 都在由 12 个电池组成的模块内部的 PC 板上。8 个模块通过 LTC6802 非隔离式 SPI 兼容串行接口通信,这在电池模块之间需要连接 3 或 4 条传导电缆。单个微控制器通过底端监视器 IC 控制整组电池监视器,并作为至主 CAN 总线的网关。CAN 收发器和电流隔离变压器仍然是电池监视系统的后两个组件。

图 4:具 CAN 网关的串联模块的方框图

电池监视架构选择

  种和第二种架构一般而言比较具有挑战性,因为并行接口需要大量连接和外部隔离。为了应对这种复杂性的提高,设计师采用了独立地与每个监视器 器件通信的方法。第三种 (具 CAN 网关的单个监视模块) 和第四种 (具 CAN 网关的串联模块) 架构采用了简化的方法,所受限制少。

  LTC6802 可以满足所有 4 种配置的需求,为系统设计师留出了选择余地。该器件的两个变体也已开发出来,一个用于串联配置,另一个用于并联配置。LTC6802-1 用于叠置式 SPI 接口配置。多个器件可以通过一个接口串联连接,该接口无需外部电平移位器或隔离器,就可沿着电池组来回发送数据。LTC6802-2 允许用单个器件满足并联架构的需求。两种变体有相同的电池监视性能规格和功能。

  电动汽车和大功率工业设备向电池组提出了大量要求。制造商期望用经济实惠的电池系统满足严格的可靠性要求。的电池监视 IC 使系统设计师能在无性能折衷的前提下,灵活地选择电池组架构。

热门推荐

更多 >
ESP32-S3 2022-03-16
RG200U 2022-03-16
USR-C322 2022-03-16

资料浏览排行榜

更多 >
商品名称 大小 浏览量
1 EPCS128SI16N 0.94MB 22234次
2 1N4001 0.19MB 18146次
3 DAC1220E 0.95MB 16469次
4 EP1C6Q240I7N 2.47MB 16017次
5 GRM32RR71H105... 0.10MB 14199次
6 DR127-3R3-R 0.72MB 11881次
7 DMG2305UX-7 0.40MB 9451次
8 DS1337U+ 0.28MB 9231次
9 DMP2008UFG-7 0.24MB 9228次
10 DX4R105JJCR18... 0.26MB 9143次