处理中...

首页 > 资料大全 > 解决方案 >

低成本隔离式3.3V到5V+DC/DC转换器的分立设计方案

低成本隔离式3.3V到5V+DC/DC转换器的分立设计方案
来源:OFweek电子工程网 时间:2012-03-27

 

隔离式3.3V到5V转换器通常用于远距离数据传输网络,这种网络中总线节点控制器由一个3.3V电源工作以节省电量,而总线电压为5V,以保证在远距离传输过程中的信号完整性并提供高驱动能力。尽管市场上已经有了3.3V到5V转换的隔离式DC/DC转换器组件,但集成的3.3V到5V转换器仍然很难找到。即使找到,这些特定的转换器(特别是那些具有稳定输出的转换器)通常都有较长的产品交付时间、价格相对昂贵并且一般都有一定的隔离电压限制。

 

如果应用要求2kV以上的隔离电压、60%以上的转换器效率或者标准组件可靠的有效性,那么分立设计就是一种能够替代集成组件的低成本方案。分立DC/DC转换器设计的缺点是需要做大量的工作——选择稳定的振荡器结构和先断后通电路,选择可以通过标准逻辑门有效驱动的MOSFET,适宜实施温度和长期可靠性测试。所有这些努力都要花费时间和资金。因此,在仓促进行这样一个计划以前,设计人员应该考虑到下列事项:集成组件通常已通过温度测试,并且拥有其他工业资质。这些组件不仅仅是可靠的解决方案,而且还拥有较快的上市时间。

 

不稳定输出转换器每1000片的起售定价一般为4.50到5.00美元,而稳定输出的转换器通常为此价格的两倍,大约为10.00美元或更高。因此,合理的做法是购买具有不稳定输出的转换器,或者利用降压电容对输出进行缓冲,或者将其送入低成本、低压降稳压器(LDO),例如:TI的TPS76650。

 

图1所示的分立DC/DC转换器设计仅使用了一些现有的标准组件(例如:逻辑IC和MOSFET等),服务于变压器驱动器,以及一个用于稳定输出电压的LDO。该电路使用许多通孔组件制成样机,从而使其比集成组件的体积要大,但是由于使用TI的Little Logic™器件,板空间得到了极大缩减。

 

这种设计的主要好处是较少的材料清单 (BOM),以及为1到6kV范围隔离电压选择隔离变压器的自由度。我们的目标是:通过使变压器驱动器级为稳定输出全集成DC/DC转换器和独立变压器驱动器提供一款低成本的替代方案。

图1 隔离式3.3V到5V推拉式转换器

 

工作原理

 

低成本、隔离式DC/DC转换器一般为推挽式驱动器类型。工作原理非常简单。带推挽输出级的方波振荡器驱动一个中心抽头变压器,其输出经过整流,可以稳定或非稳定 DC 形式使用。一个重要的功能性要求是方波必须具有50%占空比,以确保变压器铁心对称磁化。另一个要求是磁化电压(E) 和磁化时间 (T) 的乘积(称作ET乘积,单位为Vμs),不得超出由其厂商规定的变压器典型 ET乘积。我们还必须紧挨振荡器安装使用先断后通电路,以防止推挽输出级的两个变压器铁芯柱同时导电从而引起电路故障。

 

分立设计

 

著名的三反相门振荡器由U1a、U2a和U2b组成,选择它是因为它在供电波动方面较为稳定。通过一个100-pF陶瓷电容器(COSC)和两个10-kΩ电阻器(ROSC1和ROSC2),它的正常频率被设定为330kHz。在3.0-V到3.6-V电源电压波动范围内,振荡器拥有接近50%的占空比,以及低于±1.5%的频率波动。图2显示了ROSC1和ROSC2(TP1) 相加点和振荡器输出 (TP2) 处的波形。所有电压均为参考电路基准电压测得。

 

图2 TP1和TP2的振荡器波形

 

施密特触发电路NAND栅极(U1c、U1d)实现先断后通功能,以避免MOSFET导通阶段交叠。其他两个NAND门(U2c,U2d)配置为反相缓冲器,从而产生驱动N通道MOSFET(Q1、Q2)必需的正确信号极性。图3显示了完整的先断后通动作。为了适应标准逻辑门的有限驱动能力,我们选择了MOSFET,因为其较低的总电荷和较短的响应时间。

 

图3 先断后通波形

 

  

隔离变压器 (T1) 拥有2:1的次级对初级匝数比、0.9 mH的初级线圈电感,以及3kV的保证隔离电压。图4显示了变压器的输入和输出波形。

 

图4 变压器波形

 

 

两个二极管(D1、D2)均为快速肖特基整流器,在满负载电流条件下(200 mA 时 VFW 《 0.4 V)提供低正向电压的同时进行全波整流。从这些二极管后面的降压电容器(Cb3) 直接获得输出电压是可能的。这种情况下,输出不稳定,但具有 DC/DC 转换器的效率。然而,设计人员必须保证不超出受影响电路的电源电压,其在低负载或开路状态下时较容易发生。如果小负载条件下的非稳定输出电压过高,则必需在全波整流器之后使用一个线性稳压器,以提供稳定的输出电源电压。

 

线性稳压器的主要好处是低纹波输出。其他好处还包括短路保护和超温关闭。但是,主要缺点是效率非常低。

 

图5显示了4.93V输出电压条件下图1所示电路的纹波,而图6将该电路的效率同具有稳定输出的集成DC/DC组件进行了对比。

 

图5 VOUT=4.93V 时的输出纹波

 

 

图6 效率对比

 

  

下表提供了分立式DCDC转换器的BOM。请注意,旁路电容器值大于常用于一些低速应用的10 nF。这是由于高速CMOS技术(例如:AHC、AC和LVC等)具有高动态负载,因此旁路电容器值必须为0.1 μF或者更高以保证正常运行。这对驱动MOSFET的反相缓冲器特别重要,其旁路电容器值为0.68 μF。

 

 

结论

 

不存在电路板空间限制的情况下,具有稳定输出的隔离式3.3-V到5-V DC/DC转换器离散设计可以成为稳定输出集成DC/DC组件的一款现实低成本代替方案。分立设计的主要好处是可以自由选择隔离变压器,以满足各种隔离电压要求。

 

热门推荐

更多 >
ESP32-S3 2022-03-16
RG200U 2022-03-16
USR-C322 2022-03-16

资料浏览排行榜

更多 >
商品名称 大小 浏览量
1 EPCS128SI16N 0.94MB 22001次
2 1N4001 0.19MB 17868次
3 DAC1220E 0.95MB 15867次
4 EP1C6Q240I7N 2.47MB 15823次
5 GRM32RR71H105... 0.10MB 14005次
6 DR127-3R3-R 0.72MB 11682次
7 DMG2305UX-7 0.40MB 9280次
8 DMP2008UFG-7 0.24MB 9068次
9 DS1337U+ 0.28MB 9065次
10 DX4R105JJCR18... 0.26MB 8982次