【导读】21世纪数字成像技术的出现给我们带来优异的诊断功能、图像存档以及随时随地的检索功能。自20世纪70年代早期医学成像数字技术出现以来,数字 成像的重要性得以日益彰显。半导体器件中混合信号设计能力方面的一些新进展,让成像系统实现了史无前例的电子封装密度,从而带来医学成像的巨大发展。同 时,嵌入式处理器极大地提高了医疗图像处理和实时图像显示的能力,从而实现了更迅速、更准确的诊断。这些技术的融合以及许多新兴的电子健康记录标准为更为 完善的病人护理提供了发展动力
本文将介绍不同成像方法电子设计存在的诸多挑战和一些动态,具体包括数字 X 射线、磁共振成像 (MRI) 和超声波系统。
数字X射线系统
传统的X射线系统使用一种胶片/屏幕装置来检测发射到人身体的 X 射线。然而,探测器系统中的数字 X 射线信号链包含一个照片探测器阵列,该探测器阵列将辐射转换成电荷。其后面是一些电荷积分器电路和模数
转换器
(ADC)电路,以数字化输入。图1显示了一个典型数字 X 射线系统结构图的例子。
图1 数字X射线系统结构图示例
数字X射线系统性能与积分器和ADC模块的噪声性能密切相关。为了在低功耗条件下获得更高的图像质量,某个系统中支持大量信号通道所需的电子集成程度为技术的创新设定了一定的标准。正是由于组成探测器系统的许多高性能模拟组件以及执行高级图像处理任务的嵌入式处理器, X射线系统才拥有了许多相对于传统X射线系统的优势。这种组合支持更大的动态范围,从而可以获得更好的图像对比度和更低的患者X射线辐射水平,同时产生可电子存储和传输的数字图像。