来源:网络整理
时间:2019-01-10
热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。
热敏电阻是热电阻的一种,所以说,原理都是温度引起电阻变化。 但是现在热电阻一般都被工业化了,基本是指PT100,CU50等常用热电阻 他两的区别是:一般热电阻都是指金属热电阻(PT100)等,热敏电阻都是指半导体热电阻 由于半导体热电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化,而且电阻值可在0.1~100kΩ间任意选择。所以称为热敏电阻。
但是热敏电阻阻值随温度变化的曲线呈非线性,而且每个相同型号的线性度也不一样,并且测温范围比较小。所以工业上一般用金属热电阻~也就是我们平常所说的热电阻。而热敏电阻一般用在电路板里,比如像通常所说的可以类似于一个保险丝。由于其阻值随温度变化大,可以作为保护器使用。当然这只是一方面,它的用途也很多,如热电偶的冷端温度补偿就是靠热敏电阻来补偿。 另外,由于其阻值与温度的关系非线性严重……所以元件的一致性很差,并不能像热电阻一样有标准信号 。
热敏电阻的特点:
①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;
②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前可达到2000℃),低温器件适用于-273℃~-55℃;
③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;
④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;
⑥稳定性好、过载能力强。
热敏电阻的特性:
热敏电阻,对热敏感的半导体电阻。其阻值随温度变化的曲线呈非线性。
热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。
PPTC热敏电阻(聚合物正温度系数)是由填充炭黑颗粒的聚合物材料制成。这种材料具有一定导电能力,因而能够通过额定的电流。如果通过热敏电阻的电流过高,它的发热功率大于散热功率,此时热敏电阻的温度将开始不断升高,同时热敏电阻中的聚合物基体开始膨胀,这使炭黑颗粒分离,并导致电阻上升,从而非常有效地降低了电路中的电流。这时电路中仍有很小的电流通过,这个电流使热敏电阻维持足够温度从而保持在高电阻状态。当故障排除之后,PPTC热敏电阻很快冷却并将回复到原来的低电阻状态,这样又象一只新的热敏电阻一样可以重新工作了。
热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(?C)+273.15。
实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。
BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0)。(T1,R1)。(T2,R2)and(T3,R3),通过式3?6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。
电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。To=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp{(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。
热敏电阻的工作原理:
热敏电阻是一种传感器电阻,热敏电阻的电阻值,随着温度的变化而改变,与一般的固定电阻不同。金属的电阻值随植度的升高而增大,但半导体则相反,它的电阻值随温度的升高而急剧减小,并呈现非线性。在温度变化相同时,热敏电阻器的阻值变化约为铅热电阻的10倍,因此可以说,热敏电阻器对温度的变化特别敏感。半导体的这种温度特性。是因为半导体的导电方式是载流子(电子、空穴)导电。由于半导体中载流子的数目远比金属中的自由电子少得多,所以它的电阻率很大。随着温度的升高,半导体中参加导电的载流子数目就会增多,故半导体导电率就增加,它的电阻率也就降低了。
热敏电阻器正是利用半导体的电阻值随温度显著变化这一特性制成的热敏元件。它是由某些金属氧化物按不同的配方制成的。在一定的温度范围内,根据测量热敏电阻阻值的变化,便可知被测介质的温度变化。
将热敏电阻安装在电路中使用时,热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。当电路正常工作时,热敏电阻温度与室温相近、电阻很小,串联在电路中不会阻碍电流通过;而当电路因故障而出现过电流时,热敏电阻由于发热功率增加导致温度上升,当温度超过开关温度时,电阻瞬间会剧增,回路中的电流迅速减小到安全值。
热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流
1、ptc效应是一种材料具有ptc(posiTIvetemperaturecoefficient)效应,即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有ptc效应。在这些材料中,ptc效应表现为电阻随温度增加而线性增加,这就是通常所说的线性ptc效应。
2、非线性ptc效应 经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性ptc效应,相当多种类型的导电聚合体会呈现出这种效应,如高分子ptc热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。
3、高分子ptc热敏电阻用于过流保护 高分子ptc热敏电阻又经常被人们称为自恢复保险丝(下面简称为热敏电阻),由于具有独特的正温度系数电阻特性,因而极为适合用作过流保护器件。热敏电阻的使用方法象普通保险丝一样,是串联在电路中使用。
当电路正常工作时,热敏电阻温度与室温相近、电阻很小,串联在电路中不会阻碍电流通过;而当电路因故障而出现过电流时,热敏电阻由于发热功率增加导致温度上升,当温度超过开关温度(ts,见图1)时,电阻瞬间会剧增,回路中的电流迅速减小到安全值。为热敏电阻对交流电路保护过程中电流的变化示意图。热敏电阻动作后,电路中电流有了大幅度的降低,图中t为热敏电阻的动作时间。由于高分子ptc热敏电阻的可设计性好,可通过改变自身的开关温度(ts)来调节其对温度的敏感程度,因而可同时起到过温保护和过流保护两种作用,如kt16-1700dl规格热敏电阻由于动作温度很低,因而适用于锂离子电池和镍氢电池的过流及过温保护。环境温度对高分子ptc热敏电阻的影响 高分子ptc热敏电阻是一种直热式、阶跃型热敏电阻,其电阻变化过程与自身的发热和散热情况有关,因而其维持电流(ihold)、动作电流(itrip)及动作时间受环境温度影响。当环境温度和电流处于a区时,热敏电阻发热功率大于散热功率而会动作;当环境温度和电流处于b区时发热功率小于散热功率,高分子ptc热敏电阻由于电阻可恢复,因而可以重复多次使用。图6为热敏电阻动作后,恢复过程中电阻随时间变化的示意图。电阻一般在十几秒到几十秒中即可恢复到初始值1.6倍左右的水平,此时热敏电阻的维持电流已经恢复到额定值,可以再次使用了。面积和厚度较小的热敏电阻恢复相对较快;而面积和厚度较大的热敏电阻恢复相对较。
《热敏电阻的特点、特性及其工作原理》是云汉芯城小编搜集网络资料整理而成,云汉芯城被列入“全国供应链创新与应用试点企业”,是中国B2B百强企业,中国元器件分销30强,电子元器件采购网企业,国内IC交易网知名品牌,一站满足您的元器件采购需求!
(素材来自网络,由云汉芯城小编搜集网络资料编辑整理,如有问题请联系处理!)