来源:OFweek电子工程网
时间:2013-06-26
电影《终结者》里,施瓦辛格扮演了一个“打不死”的金属机器人,能变成液体一样流动。现实中的“ 液态金属 ”虽没有那么神通,却也将在先进散热管理领域大展身手。
“热障”瓶颈
“随着技术的进步,现在一部手机的运算能力,已经相当于早前一台体积庞大的计算机,性能提升了很多量级。可以想象,这么多的运算集中在一个芯片上,发热量是十分巨大的。”清华大学与中国科学院理化技术研究所双聘研究员刘静教授拿起手机笑着告诉记者,之所以通话时间久了,手机会发烫,是因为芯片集成度的提高和功耗的剧增。
过高的温度不仅令电脑频繁死机,甚至会导致芯片烧毁。对于追求极速“快感”的电脑玩家,传统的风冷方式早已不能满足其散热要求。于是,热管、水冷,甚至液氮等五花八门的散热方法层出不穷。
不过遗憾的是,这些散热方式或多或少都存在着缺陷:普遍用于笔记本电脑的热管技术存在烧毁极限,难以满足高热流密度芯片的散热需求;当前流行的水冷、液冷方式需配备体型臃肿的水箱,且存在蒸发、泄漏等问题,对于电子产品来说几乎是致命的安全隐患。
英特尔公司负责芯片设计的首席技术官帕特·盖尔欣格指出:“放眼看去,耗能和散热将成为一个根本性的限制,我们必须在芯片总体设计中认真考虑这两个问题。”怎样突破“热障”瓶颈的束缚,连IT巨人都头疼不已。
“金属”革命
这一次,是中国人为打破瓶颈带来了希望。
现有的散热方式都不理想,能不能找到更好的办法呢?在经过大量的试验、反复比较之后,刘静的脑子里忽然灵光一闪:为什么不用液态金属散热?
金属的热导率要远远高于水,可以达到水的六七十倍甚至更高。如果能用室温下处于流动状态的液态金属作为“冷却剂”,给计算机芯片“降温”,理应再合适不过了。
其实,液态金属散热技术在核电站反应堆中已经有了应用。但其采用的钠合金却“性如烈火”,很容易造成爆炸和火灾,要把它用于芯片散热显然有安全隐患。
经过反复筛选、研制,刘静的团队终想到了一种熔点低、沸点却很高的金属——镓,并借助纳米技术,来提高镓合金的性能。镓的性情比较“温和”,不会发生爆炸等危险,且对人体比较安全;更让人惊喜的是,水到了100摄氏度就会沸腾,而镓的沸点竟高达2400多摄氏度,即使放进炼钢炉里,它依旧“无动于衷”,这就为未来制造高性能计算机留下了非常大的空间。